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Spin wave energies and intensities have been calculated along three
principal symmetry directions for ferromagnetic iron. These calculations
are based on an itinerant model which incorporates band and wave-vector
dependence of the relevant Coulomb matrix elements. The results indicate
that iron’s spin waves can be described completely by an itinerant model
without recourse to additional assumptions about strong Hund’s rule

coupling or local moment behavior.

DURING the past few years neutron scattering experi-
ments have yielded considerable information about spin
waves in both ferromagnetic nickel and iron.> 3 It has
been known for some time that the itinerant-electron
model of magnetism is capable of explaining, at least
qualitatively, the unusual behavior exhibited by spin
waves in these materials. However, a remaining import-
ant question has been whether the model would with-
stand fully quantitative tests. In this regard, a recent
calculation of the generalized susceptibility showed that
the itinerant model is capable of providing quite good
quantitative agreement with low temperature spin wave
data obtained from neutron scattering experiments for
nickel.4 In iron, however, the possible occurrence of
strong Hund’s rule coupling and/or local moment
behavior might be expected to invalidate the applic-
ability of the itinerant model. The purpose of this paper
is to present some results which indicate that the
itinerant electron model is also capable of providing a
good quantitative description of iron’s spin waves.

The present work is based on a slight generalization
of the approximate (low temperature) expression for the
transverse dynamic susceptibility, x,(q, ), used in a
previous nickel investigation.*+® This generalization
leads to the following expression for the imaginary part
of x7(q, w):
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where
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E(nko) is the electronic energy for band n, wave-vector
k, and spin 0, f,x is the Fermi occupation number, and
the {a,,,(k)} are expansion coefficients of the Bloch
functions in terms of symmetry orbitals. The {a,,,,(k)}
and the electronic energy can be obtained from a
solution of the energy band equations generated by the
theory. Weuseu=1,2,3andu=4,5 fort,, and g,
symmetry terms respectively. The energy band
equations can be formally solved to give

E(nko) = ; anuc(k)[xo(k)]uvanvo(k)_i
)
X 25: Ug—d{lamw(k)lzp 0 |ann-o(k)|2Fp.—a}

B=1
where [#o(k)],, is the matrix element of an effective
single particle Hamiltonian calculated with respect to
the symmetry orbitals and F, , represents the number
of electrons with symmetry character u and spin o.
Equation (4) has been written in a form which demon-
strates clearly the possible use of model Hamiltonian
interpolation schemes to describe the band structure.
An important feature of the generalization given by
equations (1)—(4) is that the spin wave energy goes to
zero as q ~> O regardless of the particular form of
[#0 00,8

There are two differences between the results given
in equations (1)—(4) and those used previously.® First
the spin dependence has been retained in the {a,,4(k)}
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Fig. 1. Neutron scattering intensity for iron with q along
the [100] direction. The wave vector ¢ = |q} is measured
in units of 27 /a.

and second, we have allowed for the possibility that

U®™ 9, which can be related to the matrix element of a
screened coulomb matrix element calculated with
respect to the symmetry orbitals, might be different for
e, and t,, symmetries.* Both of these generalizations
follow directly from the theory. All of the information
needed to calculate x7(q, w) can be obtained from a
solution of the energy band equations. Therefore,

x7(q, w) is uniquely determined once the ferromagnetic
band structure is determined.

The first step in numerically evaluating equation (1)
was to generate a paramagnetic crystal potential from a
3d® atomic configuration. A second neighbor s—p—d
Slater—Koster interpolation scheme was employed to
generate the paramagnetic bands at arbitrary points in
the Brillouin zone after the Slater—Koster parameters
were determined from a least squares fit to a KKR first
principles calculation. This procedure provides a fast
and reasonably accurate method for generating the
{[#€o (k)] p} matrix which appears in equation (4).

The ferromagnetic bands were obtained by solving
the self-consistent equation generated by the theory.®
The two parameters corresponding to U4 ¢ for eg and
t,, symmetries respectively were chosen to produce the
experimentally determined moment and ratio of e, to
t,¢ character in the moment. The band structure which
results from the procedure can be thought of in terms of
a rigid splitting of 1.94 eV for pure d-symmetry states
and zero splitting of pure s-like states. Even though the

* Numerical estimates based on atomic-like orbitals
indicate that the off-diagonal matrix elements
between t,, and e, are small, and their effects have
been neglected.
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Fig. 2. Spin wave dispersion curve for iron. The wave
vector, q, is measured in units of 2x/a. Solid curves
labeled KK = 10 and KK = 20 were obtained using a GR
integration mesh of 440 and 3080 cubes respectively in
the irreducible zone. The bars represent neutron
scattering results of Mook and Nicklow.

pure d-states are rigidly spin-split the {a,,5(k)} turn out
to be strongly k-dependent, and as a result of s—d
hybridization effects the spin-splitting of the actual
bands does exhibit a rather strong wave-vector
dependence.

The numerical procedure for evaluating integrals of
the type shown in equation (2) is based on the Gilat—
Raubenheimer (GR) linear integration scheme and is the
same as that used previously.* Six up-spin and six down-
spin bands were used in the calculation. Because the
Fermi energy falls in the middle of the d-bands the
approximation of replacing {f,x, — fimk+qt } by One or
zero in each of the small cubes used in the GR integration
scheme generated some convergence problems in the
calculation. In order to overcome these problems we
found it necessary to use rather large numbers of cubes
in the irreducible zone. We feel, therefore, that the
numerical results which we have obtained do provide a
reasonably good description of Im xr(q, w).

Some of the zero temperature numerical results for
the neutron scattering intensity [~ Im xz(q, w)] are
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shown in Fig. 1. We obtained similar results along both
the [110] and [111] directions. The position of each
peak determines the spin-wave energy for that q. As |q|
increases the spin-wave peaks move to higher energy,
broaden, and eventually disappear altogether for |q|
somewhere between 0.35 and 0.4 (in units of 2n/a). This
booadening and ultimate disappearance of the spin-wave
peak is due to the spin-wave running into a region where
a particular weighted density of spin—flip excitations
(Stoner excitations) is large.

The spin-wave dispersion curve obtained from the
spin-wave peak positions is shown in Fig. 2. The curves
labeled KK = 10 and KK = 20 refer to the use of 440
and 3080 GR integration cubes respectively in the
irreducible Brillouin zone. The bars represent the room
temperature neutron data of Mook and Nicklow. The
theory yields an isotropic spin wave dispersion curve, in
agreement with experiment. This result is particularly
noteworthy when considering the underlying band
structure, since there is no obvious isotropy to the
electron energy bands. The agreement between theory
and experiment is not only qualitatively excellent, but
quantitatively very good as well.

The intensity and width of the spin-wave scattering
shown in Fig. 1 should also be directly comparable to
neutron scattering experiments. Unfortunately, due to
experimental difficulties there is no information of this
type available at present for pure iron. Generally we
can say, though, that the broadening of the spin waves
above 50 meV may be large enough to be experimentally
observable, and that the intensity of the scattering
above ~ 120 meV will certainly be unobservable with
the experimental sensitivity presently available.

The spin wave intensities have been measured for
Fe (4 at.% Si) and Fe (12 at.% Si), whose magnetic
properties are very similar to pure iron. Because of the
steepness of the dispersion curves in these materials, the
experimental data were obtained by fixing «w and
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varying q, rather than by fixing q and varying w as in
Fig. 1. Thus in order to directly compare with experi-
ment we must first calculate the cross section at a large
number of q points and then convolute this with the
instrumental resolution, and the computer time
required for this is prohibitive at present. Because the
resolution employed in the experiments was by necessity
rather coarse, we can nevertheless make a reliable
estimate of the intensity by simply interpolating the
cross section between different values of q and then
evaluating the integrated intensity expected in the
neutron measurements. The calculated intensities show
a rapid fall off of the spin-wave scattering intensity at
~ 100 meV, which is in good agreement with experiment.

As a result of our calculations it appears that the
itinerant model is certainly capable of providing good
overall quantitative agreement with the neutron scatter-
ing results for iron at low temperatures. These results
also indicate that the itinerant model is capable of
describing systems with more than one unpaired-spin
electron per site (ug, ~ 2.2 ug) without recourse to
additional assumptions about strong Hund’s rule
coupling. In order to extend the theory to finite tem-
peratures one must go beyond the RPA Green’s function
decoupling scheme, which was used in the derivation of
the result given in equation (1), and incorporate vertex
corrections. It has been suggested that this approach
might lead to the concept that the spin-splitting
[E(nk{) — E(nk1)] depends on a “local” magnetic
moment which would exist in regions of short range
order.” If this notion is correct it could account for the
lack of temperature dependence displayed by the spin
wave cut-off energy. Clearly more theoretical work is
needed to resolve the finite temperature behavior of the
itinerant model and more expertmental work is needed
to resolve the ambiguity in the spin:wave cut-off energy
in iron.

REFERENCES

LYNN J.W., Phys. Rev. Bl1, 2624 (1975).

COOKE J.F., Phys. Rev. B7, 1108 (1973).
COOKE I.F. (to be published).

NS AW -

SOKOLOFF I.B., Phys. Rev. Lett. 31, 1417 (1973).

MOOK H.A., NICKLOW R.M., THOMPSON E.D. & WILKINSON M.K., J. Appl. Phys. 40, 1450 (1969).
MOOK H.A. & NICKLOW R.M., Phys. Rev. B7,336 (1973).

COOKE J.F. & DAVIS H.L., AIP Conf. Proc. 10, 1218 (1973).



